

Native Plant Community Random Forest Model

Bart Richardson | MNIT@DNR / Ecological Waters Resources

The Beautiful

- Smooth
- Soft
- Flowing
- Peaceful
- Safe

The Sublime

- Rough
- Hard
- Angular
- Scary
- Dangerous

The Picturesque

Modeling Native Plant Communities (NPC) with Random Forest

Background

- The Minnesota Land Cover Classification (MLCCS)
- The DNR's Native Plant Communities (NPC)
- Combining the MLCCS and NPC MLCCS version 2.0

GIS Models for the MLCCS & NPC

- Previous NPC models Anoka Sandplains & Tamarac National Wildlife Refuge
- Statewide MLCCS Landsat data (2013) University of Minnesota
- Statewide NPC model using Random Forest (2017) University of North Dakota
- MetroGIS NPC model using Random Forest

Combine the Random Forest model with Aerial Photo Interpretation

Going from grids to polygons...

Minnesota Land Cover Classification System (MLCCS)

- Developed in 2000 in partnership the DNR, Metropolitan Council, and the National Park Service
- Unique approach to classify developed areas as a percentage of impervious surface with the dominant vegetation type (11% to 25% impervious COVEr with trees)
- Used by count of the second city governments for comprehensive planning

22. Agricultural Land 23. Maintained Tall Grass 24. Tree Plantation

> Wetland Forest Shrubland Wetland Shrubs Tall Grasses

63. Dry Tall Grasses
 71. Lichen Scrubland
 81. Rock Outcrop
 82. Mud Flat
 90. Open Water
 92. Wetland Open Water

Wetland Emergent Veg.

DNR Mn Biological Survey Native Plant Communities (NPC)

- Developed in 2003 based on ecological and environmental conditions, expanding on the DNR's Ecological Classification System (ECS)
- Community classification is dependent on environmental factors, such as soil types, slopes, aspect, and the geographical location

Combining the MLCCS with the NPC

- In 2022 the Data and Technology team of the Metro Conservation Network (MCNet) merged the NPC system with the MLCCS, replacing all of the original MLCCS natural community codes with NPC codes
- New codes were created for altered/non-native native plant communities, such as 'FFn98b - Altered/Non-native Floodplain Forest'
- The MLCCS natural community codes went from a 5 tiered system to a 7 tiered system
 - Original code 32141; 3.de.UP.nAB.nAN; Aspen-birch forest northern hardwoods subtype
 - New code 3111522; 3.1.FDn43b2; Aspen Birch Woodland Hardwood Subtype
- There isn't a 1:1 relationship between the old codes and the new codes.
- Hence the need for a NPC model

GIS Models for the MLCCS & NPC

GIS Models for the MLCCS & NPC

- Anoka Sandplains analysis of site conditions, Jason Husveth
- Tamarac National Wildlife Refuge analysis of site conditions, Scott Zager
- Statewide MLCCS Landsat data (2013) satellite image interpretation, University of Minnesota
- Statewide NPC model using Random Forest (2017) model training with environmental variables, University of North Dakota
- MetroGIS NPC model using Random Forest this project....

The sublime random forest

- Machine learning algorithm for classification and regression analysis
- An ensemble learning method made up of classifiers, or decision trees, and their predictions
- Bagging or grouping the random decision trees together creates a 'random forest'
- Environmental variables (such as grid layers) are used to train the model
- The average of randomly generated decision trees helps eliminate data noise and creates a more accurate prediction

When we can't trust a model

Mimics training dataset and models noise instead of generalizing a trend

Random subset of data and variables used in each tree

Majority vote wins

Modeling workflow

- Step 0. Prepare your data
- Step 1. Train a model
- Step 2. Evaluate model performance
- Step 3. Train again with different parameters
- Step 4. Compare models
- Step 5. Repeat... 🔘
- Step 6. Use best model to predict unknown values

Prepare MBS Native Plant Community Data

- Using National Land Cover Data and UM MLCCS data, delete NPC polygons that no longer exist
- Create a training dataset with a balanced representation of NPC classes
 - Remove community types that have less than 100 sites
 - If a community has more than 100 sites select the largest 200
- Create a training point layer from polygon centroids

NPC class code	NPC Class	Count
FDs37	Southern Dry-Mesic Oak (Maple) Woodland	217
FFs68	Southern Floodplain Forest	151
FPs63	Southern Rich Conifer Swamp	129
MHs38	Southern Mesic Oak-Basswood Forest	170
MHs39	Southern Mesic Maple-Basswood Forest	149
MRn83	Northern Mixed Cattail Marsh	136
MRn93	Northern Bulrush-Spikerush Marsh	151
OPn92	Northern Rich Fen (Basin)	97
UPs13	Southern Dry Prairie	246
WFn55	Northern Wet Ash Swamp	108
WMn82	Northern Wet Meadow/Carr	227

Prepare Environmental Variable Training Grids

- Referencing past NPC models, select data layers associated with native plant communities
- Convert polygons to grids, snapping everything to the 30 meter NLCD grid
- Eliminate NODATA values

Soils Data:

- Soil texture
- Soil order
- Organic soils
- Hydric soils
- Soil slope group
- Soil vertical relief

Topographical Data:

- Aspect
- Curvature
- Slope
- Landform
- Topographic position
- Distance to river
- Riparian areas
- Geomorphic
- Sedimentary
- Glacial phase

Vegetation and land cover:

- Canopy height
- NLCD
- NWI
- MLCCS
- Normalized diff. veg. indexes

Temperature:

- Surface temp.
- Solar area
- Continuous heat index

Random Forest Model – 29 Training Grids

variable	Full name
aspect_group	Aspect in four groups - north (315 to 45), east (45 to 135), south (135 to 225), west (225 to 315)
aspect_real	Aspect in real numbers
canopy_height	Canopy height, LiDAR derived
chili	Continuous heat-insolation load index
curvature	curvature of raster surface
distRiver	Distance to nearest flowing water body
geomorphic	Geomorphology of Minnesota - Geomorphic Association
glacial_phase	Geomorphology of Minnesota - Glacial Phase
landsurfacetemp_2022_low	Land Surface Temperature 2022, Twin Cities -
NdwiDifffMayToSeptL8	Seasonal wetness: Normalized diffrence water index of May-Sept
nlcd_2019	National Land Cover Dataset (NLCD) from 2019
nwi_veg_int_0	National Wetlands Inventory (NWI), Simplified Plant Community Classification
riparian_floodplain	FEMA Floodplain and Floodway combined with DNR streams intesecting flat areas
sedimentary	Geomorphology of Minnesota - Sedimentary Association
slope_percent	landform slope, percent
soil_texture_simple	SSURGO soils - Surface Texture, simplified to 13 classes
soils_grigal_relief	Cummins Grigal Soils of Minnesota - DESC attribute
soils_grigal_texture	Cummins Grigal Soils of Minnesota - TEXT_1 attribute
soils_grigal	Cummins Grigal Soils of Minnesota - GEISSOIL_K attribute
soils_hydric	SSURGO soils - HydrcRatng attribute
soils_order	USDA STATSGO - Dominant Soil Orders
soils_orgmatter	SSURGO soils - OrgMatter attribute
soils_slope_group	SSURGO soils - Slope, reclass to 5 groups
solar_area	Area Solar Radiation - watt hours per square meter
spring_ndvi	Normalized difference vegetation index for spring
summer_ndvi	Normalized difference vegetation index for summer
topo_landform	Geomorphology of Minnesota - Topographic Expression
tpi100m	Topographic position index at 100 m
um_mlccs_2013	MLCCS and Impervious Surface by Landsat and Lidar: 2013

ESRI Forest-based Classification and Regression (Spatial Statistics)

Geop	processing				~
€	Forest-based Classifi	icatio	n ar	nd Regressio	n
Para	meters Environments				÷.,
Pred	diction Type				
Pre	edict to raster				
Inpu	ut Training Features				
all	_veg_big_point				~
Vari	able to Predict				
cla	ss_code				
\checkmark	Treat Variable as Categorical				
Exp	lanatory Training Rasters 😔			Categorical	
	um_mlccs_2013_clean	~		\checkmark	
	tpi100m	~			
	distRiver	~		\checkmark	
	summer_ndvi	~			
	spring_ndvi	~			
	solar_area	~			
	soils_orgmatter	~			
	soils_hydric	~	6	\checkmark	
	soil_texture_simple3	~		\checkmark	
	slope_percent	~			
	riparian_floodplain	~		✓	
	nwi_veg_int_0	~			
	nlcd_2019	~		\checkmark	

Ψ×

Out	put Prediction Surface			
pr	ediction_sept_21			
Ma Pre	tch Explanatory Rasters diction 📀			Training
	um_mlccs_2013_clean	~		training grids\um_mlccs_2013_clean
	tpi100m	×		training grids\tpi100m
	distRiver	×] 🕋	training grids\distRiver
	summer_ndvi	×		training grids\summer_ndvi
	spring_ndvi	×		training grids\spring_ndvi
	solar_area	×		training grids\solar_area
	soils_orgmatter	×] 🕋	training grids\soils_orgmatter
	soils_hydric	×		training grids\soils_hydric
	soil_texture_simple3	×		training grids\soil_texture_simple3
	slope_percent	×		training grids\slope_percent
	riparian_floodplain	v		training grids\riparian_floodplain
	nwi_veg_int_0	×		training grids\nwi_veg_int_0
	nlcd_2019	×		training grids\nlcd_2019
	NdwiDifffMayToSeptL8	v		training grids\NdwiDifffMayToSeptL8
	landsurfacetemp_2022_low	×		training grids\landsurfacetemp_2022_lo
	curvature	×		training grids\curvature
	chili	×		training grids\chili
	canopy_height_0	v		training grids\canopy_height_0
	aspect	×		training grids\aspect
	geomorphic	×		training grids\geomorphic
	glacial_phase	×		training grids\glacial_phase
	soils_order	×		training grids\soils_order

×	Additional Outputs	
<u> </u>	predict_sept_21	
Â	Output Variable Importance Table predict_import_sept_21	
A	Output Classification Performance Table (Confusion Matrix) predict_perform_sept_21	
~	Advanced Forest Options Compensate for Sparse Categories Number of Trees 200	
	Minimum Leaf Size	
	Maximum Tree Depth	
	Data Available per Tree (%) 100	
	Number of Randomly Sampled Variables	
~	Validation Options	
	Training Data Excluded for Validation (%)	10
	Number of Runs for Validation 1	

The Picturesque Results

Model Characteristics

Number of Trees	200
Leaf Size	1
Tree Depth Range	17-30
Mean Tree Depth	22
% of Training Available per Tree	100
Number of Randomly Sampled Variables	5
% of Training Data Excluded for Validation	10

Model Out of B	ag Errors	
Number of Trees	100	200
MSE	42.156	40.661
FDs37	33.012	31.039
FFs68	27.439	25.460
FPs63	33.930	32.689
MHs38	64.487	63.656
MHs39	31.791	30.719
MRn83	62.103	60.239
MRn93	38.238	36.662
OPn92	57.755	57.399
UPs13	13.251	11.168
WFn55	67.031	67.561
WMn82	60.281	58.312

Top Variable Importance

/ariable	Importance	%
OIL_TEXTURE_SIMPLE	7.04	5
CANOPY_HEIGHT_0	6.31	5
ASPECT_GROUP4	6.21	5
NWI_VEG_INT_0	6.19	5
OILS_GRIGAL_RELIEF5	6.18	5
SUMMER_NDVI	5.53	4
DISTRIVER	5.40	4
NLCD_2019	5.36	4
SPRING_NDVI	5.34	4
NDWIDIFFFMAYTOSEPTL8	5.18	4
SLOPE_PERCENT_NEW	5.16	4
OILS_ORGMATTER	5.14	4
OLAR_AREA	5.14	4
ANDSURFACETEMP_2022_LOW2	5.13	4
FPI100M	4.96	4
CHILI	4.93	4
ASPECT_REAL	4.89	4
CURVATURE	4.86	4
GEDIMENTARY	4.80	4
OILS GRIGAL TEXTURE3	4.77	4

Training Data: Classification Diagnostics

*Predictions for the data used to train the model compared to the observed categories for those features

Category	F1-Score	МСС	Sensitivity	Accuracy
FDs37	1.00	1.00	1.00	1.00
FFs68	1.00	1.00	1.00	1.00
FPs63	1.00	1.00	1.00	1.00
MHs38	1.00	1.00	1.00	1.00
MHs39	1.00	1.00	1.00	1.00
MRn83	1.00	1.00	0.99	1.00
MRn93	0.99	0.99	1.00	1.00
OPn92	1.00	1.00	1.00	1.00
UPs13	1.00	1.00	1.00	1.00
WFn55	1.00	1.00	1.00	1.00
WMn82	1.00	0.99	0.99	1.00

Validation Data: Classification Diagnostics

*Predictions for the test data (excluded from model training) compared to the observed values for those test features

Category	F1-Score	MCC	Sensitivity	Accuracy
FDs37	0.62	0.59	0.73	0.94
FFs68	0.78	0.75	0.82	0.96
FPs63	0.58	0.54	0.60	0.93
MHs38	0.46	0.40	0.50	0.89
MHs39	0.52	0.49	0.46	0.94
MRn83	0.52	0.48	0.44	0.92
MRn93	0.65	0.61	0.62	0.92
OPn92	0.55	0.53	0.60	0.97
UPs13	0.85	0.83	0.87	0.96
WFn55	0.42	0.39	0.33	0.92
WMn82	0.38	0.28	0.42	0.82

Explanatory Variable Range Diagnostics

- (a) % of overlap between the ranges of the training data and the input explanatory variable
- (b) % of overlap between the ranges of the validation data and the training data
- (c) $\,\%$ of overlap between the ranges of the training data and the prediction data
- * Data ranges do not coincide. Training or validation is occurring with incomplete data.
- + Ranges of the training data and prediction data do not coincide and the tool is attempting to extrapolate.
- Succeeded at Thursday, September 21, 2023 5:10:24 PM (Elapsed Time: 14 minutes 11 seconds)

Variable	Training		Validation		Prediction		Share		
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Training ^a	Validation ^b	Prediction ^c
TPI100M	-11.34	7.52	-4.80	3.85	-17.86	15.37	1.00	0.46*	1.76+
DISTRIVER	0.00	0.08	0.00	0.06	-0.00	0.10	1.00	0.74*	1.20+
SUMMER_NDVI	0.01	0.51	0.03	0.50	-0.11	0.55	1.00	0.94*	1.32+
SPRING_NDVI	-0.03	0.39	-0.02	0.25	-0.12	0.49	1.00	0.66*	1.47+
SOLAR_AREA	4717.21	5976.16	4722.52	5946.24	4158.86	6035.09	1.00	0.97*	1.49+
SOILS_ORGMATTER	0.00	87.00	0.00	87.00	0.00	87.00	1.00*	1.00	1.00
SLOPE_PERCENT_NE W	0.00	29.39	0.00	30.10	0.00	40.26	0.98*	1.02	1.37+
NDWIDIFFFMAYTOS EPTL8	-0.25	0.12	-0.20	0.07	-0.32	0.25	1.00	0.75*	1.58+
LANDSURFACETEMP _2022_LOW2	81.00	99.18	81.00	95.32	81.00	109.50	1.00	0.79*	1.57+
CURVATURE	-3.51	2.73	-1.57	1.40	-8.00	7.51	1.00	0.48*	2.49+
СНІІ	47.25	239.08	96.61	225.20	4.02	263.65	1.00	0.67*	1.35+
CANOPY_HEIGHT_0	0.00	34.38	0.00	29.39	0.00	118.81	1.00	0.85*	3.46+
ASPECT_REAL	-1.00	358.38	-1.00	345.52	-1.00	359.99	1.00	0.96*	1.00+

Next Steps...

Next Steps...

Going from the predictive grid to polygons

- Where MLCCS data exists, intersect the natural polygons with the NPC predictive grid
 - Create a protocol that maintains the hydrological regime between the MLCCS and NPC
 - An upland MLCCS polygon should align with an NPC upland community

- Use LandSat, LiDAR, and aerial photos to generate polygons based on vegetation patterns
 - Create a process that aids aerial photo interpretation and heads up digitizing

Next Steps...

Run the model statewide(?)

- Greatly increase the number of native plant communities
- Find tune the training layers for different geographic regions north, central, and south
- Try modeling to the NPC Type and Subtype level
- Use Trimble eCognition to help create NPC polygons

Thank you!

A special thank you to:

- Amy Kendig
- Dustin Graham
- Bob Dunlap
- Anne Espeset
- Jennifer Corcoran
- Ram Deo
- Molly Shoberg
- Ben Gosack
- Jason Husveth
- Scott Zager
- Seth Fore

